High Fidelity Simulations of Flapping Wings Designed for Energetically Optimal Flight

نویسندگان

  • Per-Olof Persson
  • David J. Willis
چکیده

A diversity of efficient solutions for flapping flight have evolved in nature; however, it is often difficult to isolate the key characteristics of efficient flapping flight from biological constraints. Rather than base micro aerial vehicle (MAV) design on natural flyers alone, we propose a multi-fidelity computational approach for analysis and design. At the lowest fidelity level, we use a wake-only energetics model that allows us to rapidly scan the global flapping kinematics for efficient kinematics and configurations. Following the wake-only design space characterization, we determine a series of candidate flapping wing geometries that can produce the desired wake characteristics. To do this, we have developed a quasiinverse wing design strategy that attempts to match the designed vehicle’s wake-circulation distribution with that predicted by the energetics model. Using our modified-doublet lattice method, we are able to determine how to modulate wing twist and camber to produce the desired wake vorticity. Because the method assumes inviscid flow, we are able to derive a large number of candidate designs to produce the target wake; however, as we show in this paper, only some of the designs perform adequately in physically relevant viscous fluids. As such, we use a high order, Discontinuous Galerkin, Navier-Stokes solver to simulate and assess the candidate designs, and examine which geometries minimize flow separation, improve performance and increase efficiency. The focus of this paper is on the design and analysis of efficient flapping wings. We present an application of our framework to a MAV design that has similar characteristics as medium sized fruit bat. We examine candidate wing designs to illustrate how adjusting wing section camber may be more favorable than adjusting wing twist alone. We find that the angle the leading edge of the wing presents to the flow is critical to minimizing flow separation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and emergence of flapping flight of butterfly based on experimental measurements

The objective of this paper is to clarify the principle of stabilization in flapping-of-wings flight of a butterfly, which is rhythmic and cyclic motion. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. For the aerodynamic forces, a panel method is applied. Validity of the mathematical models is sh...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

Efficiency of Lift Production in Flapping and Gliding Flight of Swifts

Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing...

متن کامل

Numerical Simulation of Flapping Wings using a Panel Method and a High-Order Navier-Stokes Solver

The design of efficient flapping wings for human engineered micro aerial vehicles (MAVs) has long been an elusive goal, in part due to the large size of the design space. One strategy for overcoming this difficulty is to use a multi-fidelity simulation strategy appropriately balances computation time and accuracy. We compare two models with different geometric and physical fidelity. The low-fid...

متن کامل

Shape, flapping and flexion: wing and fin design for forward flight.

Both kinematics and morphology are critical determinants of performance in flapping flight. However, the functional consequences of changes in these traits are not yet well understood. Traditional aerodynamic studies of planform wing shape have suggested that high-aspect-ratio wings generate more force per area and perform more efficiently than low-aspect-ratio wings, but these analyses may neg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010